Exercise Sheet 1

Exercise 1 (5 scores)

The Gamma function Γ is defined by the Lebesgue integral

$$\Gamma(z) = \int_{[0,\infty)} t^{z-1} e^{-t} dt, \quad z > 0.$$

Prove the following assertions:

- (a) $\Gamma(z)$ is well-defined for z > 0.
- (b) Let z > 0 and $\varepsilon > 0$. Then the Riemann integral $I_{\varepsilon}(z) := \int_{\varepsilon}^{\frac{1}{\varepsilon}} t^{z-1} e^{-t} dt$ and $I(z) = \lim_{\varepsilon \to 0} I_{\varepsilon}(z)$ exist.
- (c) For each z > 0 we have $I(z) = \Gamma(z)$.
- (d) The Gammafunction satisfies the following formula

$$\Gamma(z+1) = z\Gamma(z), \quad z > 0.$$

(e) The Gammafunction is continuous.

Hint: Use dominated convergence and the relation between Riemann and Lebesgue integrals (see appendix in the script).

Exercise 2 (4 scores)

Let m(dx) be the Lebesgue measure on \mathbb{R} and set $\mu(dx) = p(x)m(dx)$ where

$$p(x) = (2\pi\sigma^2)^{-\frac{1}{2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \ x \in \mathbb{R}$$

with $\mu \in \mathbb{R}$ and $\sigma > 0$. Show that μ is a probability measure and it holds that

$$\int_{\mathbb{R}} |x|^k \mu(dx) < \infty, \quad \forall k \ge 1.$$

Compute the expressions $\int_{\mathbb{R}} x^k \mu(dx)$ and $\int_{\mathbb{R}} (x-\mu)^k \mu(dx)$ where $k \ge 1$.

Exercise 3 (4 scores)

Let X be a random variable such that there exists A, C > 0 with

$$\int_{\Omega} |X(\omega)|^n d\mathbb{P}(\omega) \le AC^n, \quad \forall n \ge 0.$$

Prove that $\mathbb{P}(|X| > C) = 0$.

Exercise 4 (4 scores) Let X be a random variable with $X \ge 0$ a.s. and

$$\mathbb{P}(X \ge n) \ge \frac{1}{n}, \quad \forall n \ge 1.$$

Prove that $\int_{\Omega} X d\mathbb{P} = \infty$.

Exercise 5 (4 scores, Talk)

Prepare a talk on the construction and main properties of the Lebesgue integral.